Continuum Theory of Fracture

نویسندگان

  • Denis Pilipenko
  • Robert Spatschek
  • Efim A. Brener
چکیده

We present a continuum theory of fracture which describes the fast propagation of cracks. The theory overcomes the usual problem of a finite time cusp singularity of the Grinfeld instability by the inclusion of elastodynamic effects which restore the selection of the steady state tip radius and velocity. Two different numerical approaches are presented to solve this problem. A sharp interface approach allows to study the steady state regime by the means of a series expansion technique. Also, we developed a phase field model for elastically induced phase transitions; in the limit of small or vanishing elastic coefficients in the new phase, fracture can be studied. The simulations confirm analytical predictions for fast crack propagation, and the results of both numerical approaches are in excellent agreement with each other.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modelling of Crack Growth Using a New Fracture Criteria Based Peridynamics

Peridynamics (PD) is a nonlocal continuum theory based on integro-differential equations without spatial derivatives. The elongation fracture criterion is implicitly incorporated in the PD theory, and fracture is a natural outcome of the simulation. On the other hand, a new fracture criterion based on the crack opening displacement combined with peridynamic (PD-COD) is proposed. When the relati...

متن کامل

A Continuum Model For Stone-wales Defected Carbon Nanotubes

In this paper, a continuum model is proposed so that a Stone-Wales (SW) defected carbon nanotube (CNT) is replaced by an initial circumferential crack in a continuum cylindrical shell. For this purpose, the critical energy release rate and then the fracture toughness of a defected CNT are calculated using the results of an existing atomistic-based continuum finite element simulation. Finally, t...

متن کامل

Breakdown of Continuum Fracture Mechanics at the Nanoscale

Materials fail by the nucleation and propagation of a crack, the critical condition of which is quantitatively described by fracture mechanics that uses an intensity of singular stress field characteristically formed near the crack-tip. However, the continuum assumption basing fracture mechanics obscures the prediction of failure of materials at the nanoscale due to discreteness of atoms. Here,...

متن کامل

Refined plate theory for free vibration analysis of FG nanoplates using the nonlocal continuum plate model

In this article, the free vibration behavior of nanoscale FG rectangular plates is studied within the framework of the refined plate theory (RPT) and small-scale effects are taken into account. Using the nonlocal elasticity theory, the governing equations are derived for single-layered FG nanoplate. The Navier’s method is employed to obtain closed-form solutions for rectangular nanoplates assum...

متن کامل

Smart Vibration Control of Magnetostrictive Nano-Plate Using Nonlocal Continuum Theory

In this research, a control feedback system is used to study the free vibration response of rectangular plate made of magnetostrictive material (MsM) for the first time. A new trigonometric higher order shear deformation plate theory are utilized and the results of them are compared with two theories in order to clarify their accuracy and errors. Pasternak foundation is selected to modelling of...

متن کامل

Thermal vibration analysis of double-layer graphene embedded in elastic medium based on nonlocal continuum mechanics

This paper presents the thermal vibration analysis of double-layer graphene sheet embedded in polymer elastic medium, using the plate theory and nonlocal continuum mechanics for small scale effects. The graphene is modeled based on continuum plate theory and the axial stress caused by the thermal effects is also considered. Nonlocal governing equations of motion for this double-layer graphene s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006